PRELIMINARY DRAFT--FOR DISCUSSION PURPOSES ONLY #### Attachment 2 #### **GHG Benefit Determination for Renewable Sources** | Technology | Wind | Solar Thermal Trough | Solar Stirling | Solar PV | |--|---|--|--|--| | | | | | | | Avoided Grid GHG Emissions
(lbsCO2E/MWh) | 1,100 | 1,100 | 1,100 | 1,100 | | Power System GHG (lbsCO2E/MWh) | | | | | | Transportation / Maintenance Emissions (lbsCO2E/MWh) | | | | | | Potential GHG Benefit (lbsCO2E/MWh) | 1,100 | 1,100 | 1,100 | 1,100 | | Basis | GHG benefits results
from power
displaced from grid | GHG benefit results
from power displaced
from grid | GHG benefit results
from power displaced
from grid | GHG benefit results from power displaced from grid | | Assumptions and Notes | | | | Calculation does not
consider the GHG benefit
for converting CH4 to CO2
and the electrical efficiency
of the equipment | **Metrics** Grid Emission Rate (lbsCO2E/MWh) (CEC) 1,100 Note: The Scoping Plan used 963 lbs CO2E/MWh ## PRELIMINARY DRAFT--FOR DISCUSSION PURPOSES ONLY Attachment 2 | Technology | Solar Tower | Biomass Combustion | Landfill / Digester Gas-to-
Energy | |--|--|--|---| | | | | Engine application | | Avoided Grid GHG Emissions
(lbsCO2E/MWh) | 1,100 | 1,100 | 1,100 | | Power System GHG (lbsCO2E/MWh) | | | 672 | | Transportation / Maintenance Emissions (lbsCO2E/MWh) | | 70 | | | Potential GHG Benefit (lbsCO2E/MWh) | 1,100 | 1,030 | 428 | | Basis | GHG benefit results from power displaced from grid | GHG benefits results from
power displaced from grid
minus GHG emissions
from transporting biomass
to energy plant | Base case is destruction of landfill gas with flare; GHG benefit combination of: 1) destruction efficiency of flare compared to energy system; 2) power displaced from grid | | Assumptions and Notes | | Biomass will emit same amount of CO2 whether it is allowed to decay in field, burned in field, or combusted at an energy plant; Transportation estimate based on 25 percent of emissions from 80 miles round-trip for heavy duty truck | Destruction efficiency for
engines is 8 percent less than
flarestherefore CH4
emissions will increase by 168
times (or 8% x 21) in energy
systems as compared to flare | ### PRELIMINARY DRAFT--FOR DISCUSSION PURPOSES ONLY Attachment 2 | Technology | Landfill / Digester Gas-to-
Energy | Converting Biomass to
Biodiesel | Biogas Injection into Natural
Gas Pipeline | |--|--|---|--| | | Turbine and boiler | | 5% injection | | Avoided Grid GHG Emissions
(lbsCO2E/MWh) | 1,100 | 1,100 | 1,100 | | Power System GHG (lbsCO2E/MWh) | | 260 | | | Transportation / Maintenance Emissions (lbsCO2E/MWh) | | | | | Potential GHG Benefit (lbsCO2E/MWh) | 1,100 | 840 | 21-33 | | Basis | Base case is destruction of landfill gas with flare; GHG benefit is from power displaced from grid | GHG benefit results from
power displaced from grid
minus GHG emission from
converting biomass to diesel | GHG benefit results from natural gas GHG being replaced by biogas | | Assumptions and Notes | Destruction efficiency of
turbines and boilers is the
same as a flare | Power System GHG includes
GHG emissions from
converting biomass to
biodiesel and electrical co-
benefit | Biogas inclues lanfill or digester gas; converting biomass to biogas is not included; biogas/natural gas mixture burned in utility unit (range represents combined cycle plant versus grid average). | ### PRELIMINARY DRAFT--FOR DISCUSSION PURPOSES ONLY Attachment 2 | Technology | Geothermal | | Small Hydropower and Conduit Hydropower | | |--|--|-------------------------|---|--| | | High CO2 emission factor | Low CO2 emission factor | | | | Avoided Grid GHG Emissions (lbsCO2E/MWh) | 1,100 | 1,100 | 1,100 | | | Power System GHG (lbsCO2E/MWh) | 260 | 50 | | | | Transportation / Maintenance Emissions (lbsCO2E/MWh) | | | | | | Potential GHG Benefit (lbsCO2E/MWh) | 840 | 1,050 | 1,100 | | | Basis | GHG benefits results from power GHG emissions from | | GHG benefits results from power displaced from grid | | | Assumptions and Notes | Geothermal power generation emission factor may vary due to geology and type of geothermal system used; dry steam geothermal may have almost zero emissions (need to investigate further); for the high CO2 emissions limit, the reference document does not specify what is included in the emission factor | | | | ## PRELIMINARY DRAFT--FOR DISCUSSION PURPOSES ONLY Attachment 2 | Technology | Molten Carbonate Fuel Cell | Phosphoric Acid Fuel
Cell | MSW Combustion or
Conversion | |--|---|------------------------------|---| | Avoided Grid GHG Emissions
(lbsCO2E/MWh) | 1,100 | 1,100 | 1,100 | | Power System GHG (lbsCO2E/MWh) | | | To be determined | | Transportation / Maintenance Emissions (lbsCO2E/MWh) | | | | | Potential GHG Benefit (lbsCO2E/MWh) | 1,100 | 1,100 | | | Basis | GHG benefit results from power | er displaced from grid | GHG benefit results from
power displaced from grid
minus GHG emissions
from the combustion or
conversion of MSW | | Assumptions and Notes | Fuel cells are using renewable fuel; ca
the GHG benefit for converting CH4
efficiency of the ec | to CO2 and the electrical | Assumed heat content of MSW 9,007,845 Btu/ton | # PRELIMINARY DRAFT--FOR DISCUSSION PURPOSES ONLY Attachment 2 GHG Benefit Determination for Renewable Sources | Technology | Ocean Technology | |--|--| | Avoided Grid GHG Emissions (lbsCO2E/MWh) | 1,100 | | Power System GHG (lbsCO2E/MWh) | | | Transportation / Maintenance Emissions (lbsCO2E/MWh) | | | Potential GHG Benefit (lbsCO2E/MWh) | 1,100 | | Basis | GHG benefit results from power displaced from grid | | Assumptions and Notes | No commercial applications |